viernes, 30 de enero de 2009 | | 0 comentarios

Sistema de Conducción


Aunque el corazón está en gran parte formado por tejido muscular, el no depende del sistema nervioso para latir y bombear la sangre. El corazón posee su propio sistema de generación y conducción de impulsos eléctricos. Este sistema es capaz de iniciar, automáticamente y regularmente (entre 60-100 veces por minuto), los impulsos. Los impulsos eléctricos estimulan las células vecinas y estas estimulan otras células. Rápidamente, el impulso eléctrico (ondas eléctricas) se despliega por todas las partes del corazón.

La estimulación eléctrica de las células musculares produce la contracción temporal de estas, resultando en la contracción del corazón y el bombeo de la sangre.



Nódulo Sinoauricular (Nódulo SA)

El nódulo sinoauricular (nódulo SA), llamado tambien nódulo sinusal, es un grupo de células especializadas que se encuentran cerca de la parte superior de la unión entre la vena cava superior y la aurícula derecha. Estas células especializadas poseen la capacidad de iniciar impulsos eléctricos espontáneamente (automaticidad). El nódulo SA es un marcapaso.

El marcapaso genera impulsos eléctricos regularmente que se desplazan por todo el corazón estimulando la contracción cardiaca. Aunque varias zonas en el corazón tienen la capacidad de funcionar como marcapasos, el nódulo SA es el marcapaso principal o dominante del corazón. El nódulo SA genera genera impulsos 60-100 veces por minuto. En casos de arritmias otras zonas del corazón pueden convertirse en el marcapaso dominante. Por ejemplo, en la taquicardia ventricular, marcapasos en los ventriculos pueden generar impulsos más de 100 veces por minuto.

El ritmo cardiaco que origina en el nódulo SA se llama ritmo sinusal. Como se explicó anteriormente, los impulsos eléctricos generados por el nódulo sinusal ocurren de 60 a 100 veces por minutos. Esta frecuencia puede aumentar debido a la estimulación producida por el Sistema Nervioso Simpático (catecolaminas -norepinefrina y epinefrina- estimulan el nódulo SA) o la frecuencia puede disminuir debido a la estimulación debido a la acción del nervio Vago (Sistema Nervioso Parasimpático).

El impulso eléctrico iniciado por el nódulo SA resulta en una onda eléctrica que se desplaza atraves de las auriculas derechas e izquierda. La onda eléctrica pasa del aurícula derecha a la izquierda por medio de la rama de Bachman. Esta rama sale del nódulo SA atraviesa el fibroso tabique interauricular. La onda eléctrica demora en llegar, desde el nódulo SA al nódulo auriculoventricular (AV), alrededor de 3/100 de un segundo.

Unión AV (Nódulo AV y el Haz de His)

El nódulo AV es una estructura en forma de bulbo y compuesta de células especializadas similares a las del nódulo SA. El nódulo AV posee la capacidad de inciar impulsos eléctricos sirviendo como marcapaso del corazón cuando el nódulo SA falla. El nódulo AV genera impulsos con una frecuencia entre 40-60 veces por minuto. Notará que esta frecuencia es más lenta que el nódulo SA (60-100 veces por minuto).

El nódulo AV retrasa el paso de los impulso eléctricos atraves de él. Esta demora permite la contracción de las auriculas antes de la contracción de los ventriculos. La contracción auricular es la llamada patada auricular.

El Haz de His origina en el nódulo AV y pasa atraves del tejido fibroso que separa las aurículas de los ventriculos. De esta manera, el Haz de His es el componente del sistema de conducción que transmite los impulsos eléctricos provenientes de las aurículas hacia los ventriculos.

Como el nódulo SA y el nódulo AV, el haz de His posee células especializadas que generan impulsos eléctricos espontáneamente (automaticidad). El Haz de His, como el nódulo AV, genera impulsos con una frecuencia de 40-60 veces por minuto. Juntos, el nódulo AV y el Haz de His reciben el nombre de Unión AV. El Haz de His, el nódulo AV, las aurículas y el nódulo SA se encuentran arriba de los ventriculos. Ritmos cardiacos que originan en estas zonas son llamados ritmos supraventriculares.

Las Ramas

Para que los ventriculos se contraigan fuertemente y en una forma coordinada, el impulso eléctrico tiene que transmitirse rápidamente por todo el área de ambos ventriculos. Las ramas derecha e izquierda ayudan en esta función de la siguiente manera:
· la onda eléctrica es dividida en cuatro equipotentes onda eléctricas;
· las ramas estan cubiertas por un tejido fibroso aislante.

Las aisladas cuatro ondas eléctricas se desplazan por los ventriculos en 1/100 de un segundo. Las ramas se pueden considerar como los "superconductores" del corazón.

La Red de Purkinje

Las ramas terminan en la Red de Purkinje. Esta red forma miles de conecciones con las células musculares cardiacas. Los ventriculos tambien poseen células especializadas capaces de actuar como marcapasos. Estas células se encuentran dispersas por los ventriculos y su frecuencia de generar impulsos es de 20-40 veces por minuto. Esta células generan impulsos cuando el nódulo SA y el nódulo AV no generan impulsos, cuando impulsos de origen supraventricular son bloqueados en la unión AV, o cuando los impulsos son bloqueados en las ramas, o en caso de un foco ectópico en la red de Purkinje.

Cuando otros marcapasos fallan, el ventriculo tratará de funcionar como el marcapaso del corazón. Es importante mencionar que una frecuencia cardiaca de 20-40 latidos por minuto es muy probable que no sea suficiente para mantener la vida del ser humano. El marcapaso ventricular es la última opción del corazón.

Información de:

http://www.kidshealth.org/parent/en_espa... http://es.wikipedia.org/wiki/Coraz%C3%B3... http://www.kidshealth.org/parent/en_espa... http://html.rincondelvago.com/corazon_4.... http://www.gratisweb.com/cvallecor/Anatomia3.htm

| | 0 comentarios

Anatomía Interna




En su interior pueden observarse cuatro cavidades, dos superiores llamadas aurícula derecha y aurícula izquierda y dos inferiores, con verdadera función de bomba, llamados ventrículo derecho y ventrículo izquierdo.

Las aurículas están separadas entre sí por un tabique o septum interauricular y los ventrículos por el septum interventricular. Ambos tabiques se continúan uno con otro, formando una verdadera pared membranosa-muscular que separa al Corazón el dos cavidades derechas y dos cavidades izquierdas.

Esta separación también es funcional, ya que las cavidades derechas se conectan con la Circulación Pulmonar o circuito menor y las cavidades izquierdas, con la su Circulación General Sistémica o circuito mayor.

En conclusión, a la aurícula derecha llegan las Venas Cavas superior e inferior trayendo sangre sin oxígeno (carbo-oxígenada) de todo el organismo. Pasa al ventrículo derecho, el cual al contraerse (Sístole), la envía a la Arteria Pulmonar (única arteria del organismo que lleva sangre carbo-oxigenada) la que se dirige a ambos pulmones para efectuar el intercambio gaseoso (circuito menor). La sangre oxigenada regresa a la aurícula izquierda por medio de las cuatro Venas Pulmonares (únicas Venas que transportan sangre con oxígeno) y ya en el ventrículo izquierdo, es expulsada hacia la Arteria Aorta para ser distribuida por todo el organismo (circuito mayor).


Las aurículas se comunican con los ventrículos a través de un orificio ocupado por una válvula, cuya función es abrirse ampliamente para permitir el ingreso de sangre en la cavidad, luego de cerrarse herméticamente, durante la sístole, para impedir que la misma refluya hacia atrás. Estas válvulas son la Mitral, entre aurícula y ventrículo izquierdos y la Tricúspide, entre aurícula y ventrículo derechos.

La válvula Mitral está formada por dos valvas de tejido membranoso, que se insertan en el músculo del ventrículo, por medio de unas cuerdas tendinosas, cuya función es la de mantener, a modo de tirantes, las valvas cerradas, impidiendo que prolapsen hacia el interior de la aurícula, durante la sístole ventricular por lo tanto favoreciendo el cierre hermético de la misma. Por su situación anatómica se denominan valva antero-medial y póstero-medial. La válvula Tricúspide, formada por el mismo tipo de tejido, está compuesta por tres valvas, de donde deriva su nombre. La de mayor tamaño se llama valva anterior, luego le sigue la valva sep tal (por estar cercana al tabique) y por último la valva posterior que suele ser la más pequeña.


Los ventrículos vuelcan su contenido sanguíneo en las grandes arteria, Aorta para el ventrículo izquierdo y Pulmonar para el ventrículo derecho. También están separados entre sí por válvulas que cumplen la función descripta anteriormente, la válvula aórtica entre el ventrículo izquierdo y arteria Aorta y la válvula Pulmonar entre el ventrículo derecho y la arteria Pulmonar. Ambas poseen tres valvas llamadas semilunares o sigmoideas formando una especie de estrella de tres puntas.


A diferencia de las válvulas aurículo-ventriculares, estas carecen de cuerdas tendinosas que las sostenga y se cierran herméticamente ya que se parecen a diminutos paracaídas, que se abomban y contactan entre sí, soportando el peso y la presión de la columna de sangre expulsada.

Si desea observar una imagen ampliada de lo descripto, oprima el siguiente enlace y tenga paciencia.

Anatómicamente el ventrículo derecho es delgado, ya que debe contraerse en contra de una resistencia o presión muy baja. Tiene forma de medialuna y su pared mide entre 4 y 5 mm. de espesor. El ventrículo izquierdo debe vencer la resistencia o presión arterial sistémica, por lo tanto su fuerza de contracción debe ser mayor. Por este motivo de sus paredes son más gruesa, con un espesor entre 8 y 15 mm.